If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2-5b-18=0
a = 2; b = -5; c = -18;
Δ = b2-4ac
Δ = -52-4·2·(-18)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*2}=\frac{-8}{4} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*2}=\frac{18}{4} =4+1/2 $
| 2x2−28x+98=02 | | X+4x-x-x=7 | | 8t-3/t+1=0 | | 8m18m19=0 | | 15x+3=16x-4 | | -(8z+4)=4z-2(6z+2) | | x+x/2+x/4+x/8=40 | | j-333=38 | | X-4/2=7-2x | | Y=4x+3-2x-1 | | 14=-(-(p-8))/(2)+12 | | c+67=89 | | 2d-9=-20 | | 64l=8 | | 1/2(8x+4)=3x+27 | | -16(x+6)=16 | | 12q+9=-2q+9 | | 2r=54 | | 6d−11/2=2d−13/2 | | 7=q-9 | | 5r^2=936 | | 4(x+15)+6=14 | | 2(y-4)=8(y-1)-6y | | 54-18x=-198 | | -8x+38=-6(x-7)+2 | | -6(9-3x)=-198 | | j/4=3 | | 3(y+4)=8y-23 | | -54-18x=-198 | | g+5=14 | | m/4=18 | | 3(p+2)=198 |